Novel dominant rhodopsin mutation triggers two mechanisms of retinal degeneration and photoreceptor desensitization.

نویسندگان

  • Roustem Iakhine
  • Irit Chorna-Ornan
  • Troy Zars
  • Natalie Elia
  • Yan Cheng
  • Zvi Selinger
  • Baruch Minke
  • David R Hyde
چکیده

A variety of rod opsin mutations result in autosomal dominant retinitis pigmentosa and congenital night blindness in humans. One subset of these mutations encodes constitutively active forms of the rod opsin protein. Some of these dominant rod opsin mutant proteins, which desensitize transgenic Xenopus rods, provide an animal model for congenital night blindness. In a genetic screen to identify retinal degeneration mutants in Drosophila, we identified a dominant mutation in the ninaE gene (NinaE(pp100)) that encodes the rhodopsin that is expressed in photoreceptors R1-R6. Deep pseudopupil analysis and histology showed that the degeneration was attributable to a light-independent apoptosis. Whole-cell recordings revealed that the NinaE(pp100) mutant photoreceptor cells were strongly desensitized, which partially masked their constitutive activity. This desensitization primarily resulted from both the persistent binding of arrestin (ARR2) to the NINAE(pp100) mutant opsin and the constitutive activity of the phototransduction cascade. Whereas mutations in several Drosophila genes other than ninaE were shown to induce photoreceptor cell apoptosis by stabilizing a rhodopsin-arrestin complex, NinaE(pp100) represented the first rhodopsin mutation that stabilized this protein complex. Additionally, the NinaE(pp100) mutation led to elevated levels of G(q)alpha in the cytosol, which mediated a novel retinal degeneration pathway. Eliminating both G(q)alpha and arrestin completely rescued the NinaE(pp100)-dependent photoreceptor cell death, which indicated that the degeneration is entirely dependent on both G(q)alpha and arrestin. Such a combination of multiple pathological pathways resulting from a single mutation may underlie several dominant retinal diseases in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accumulation of Rhodopsin in Late Endosomes Triggers Photoreceptor Cell Degeneration

Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these comp...

متن کامل

Severe retinal degeneration caused by a novel rhodopsin mutation.

PURPOSE To identify a new mouse mutation developing early-onset dominant retinal degeneration, to determine the causative gene mutation, and to investigate the underlying mechanism. METHODS Retinal phenotype was examined by indirect ophthalmoscopy, histology, transmission electron microscopy, immunohistochemistry, Western blot analysis, and electroretinography. Causative gene mutation was det...

متن کامل

Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa.

Retinitis pigmentosa (RP) is a group of inherited human diseases in which photoreceptor degeneration leads to visual loss and eventually to blindness. Although mutations in the rhodopsin, peripherin, and cGMP phosphodiesterase genes have been identified in some forms of RP, it remains to be determined whether these mutations lead to photoreceptor cell death through necrotic or apoptotic mechani...

متن کامل

Q344ter Mutation Causes Mislocalization of Rhodopsin Molecules That Are Catalytically Active: A Mouse Model of Q344ter-Induced Retinal Degeneration

Q344ter is a naturally occurring rhodopsin mutation in humans that causes autosomal dominant retinal degeneration through mechanisms that are not fully understood, but are thought to involve an early termination that removed the trafficking signal, QVAPA, leading to its mislocalization in the rod photoreceptor cell. To better understand the disease mechanism(s), transgenic mice that express Q34...

متن کامل

Dominant and recessive mutations in rhodopsin activate different cell death pathways.

Mutations in rhodopsin (RHO) are a common cause of retinal dystrophy and can be transmitted by dominant or recessive inheritance. Clinical symptoms caused by dominant and recessive mutations in patients and animal models are very similar but the molecular mechanisms leading to retinal degeneration may differ. We characterized three murine models of retina degeneration caused by either Rho loss ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 10  شماره 

صفحات  -

تاریخ انتشار 2004